@ Software Engineering Technology

Object-Oriented Layers in ELIST

Mary Ann Widing, Kathy Lee Simunich, Datiusz Blachowicz, Mary Braun, and Dr. Charles Van Groningen

Argonne National Laboratory

In developing large, complex: software systems, object-oriented programming techniques can provide many benefits. In addition

to using an object-oriented langnage, developers shonld also employ other technigues such as layers to fully obtain these bene-
fits. This article discusses several of these design details that were used in developing a military logistics system called
Enbanced Logistics Intra-Theater Support Tool.

lanning for the transportation of large

amounts of equipment, troops, and
supplies presents a complex problem for
military analysts. Software tools are critical
in defining and analyzing these plans.
Argonne National Laboratory developed
the Enhanced Logistics Intra-Theater
Support Tool (ELIST) to assist military
planners in determining the logistical feasi-
bility of an intra-theater course of action.
This article focuses on the object-oriented
design strategies used in developing the lat-
est version of this system. Details of the
specific military, logistical algorithms that
were implemented can be found in other
sources [1].

ELIST Model Requirements
The military logistics community has suc-
cessfully used the previous version of
ELIST (v.7) in planning analyses and train-
ing exetrcises for a number of years [2].
Ongoing use of this system has led to
requests for more detail, more capabilities,
and increased flexibility. Users wanted to
model the transportation of military cargo
at the individual vehicle level with a much
more detailed simulation than in the exist-
ing ELIST system. Because of the size and
complexity of the new logistics transporta-
tion model, performance was also a pri-
mary consideration. ELIST needed to be
more reliable with a2 mote robust data stor-
age and handling system to address
increased data requirements. Therefore, in
developing this new version, Argonne
National Laboratory took advantage of the
opportunity to perform a total redesign of
the program architecture.

Multiple languages were used to imple-
ment the previous version of ELIST.
Initially, Prolog was used for most of the
data and model representations and com-
putations. C components and libraries were
used for computations, user interface, and
integration. Although ELIST was a very
successful application, this multi-language
approach proved difficult and time-con-
suming to port and maintain.

For the new ELIST, the Java language

January 2004

was selected for many reasons. Java sup-
ports object-oriented features such as
encapsulation, inheritance, abstraction, and
polymorphism. Using Java would solve
many portability concerns because of the
availability of Java virtual machines on
multiple platforms. The standard Java
developer’s kit provides built-in packages
for user interface, database-connectivity,
and distributed processing that address
many maintenance concerns. Java’s memo-
ry management and exception handling
schemes address reliability concerns.
Oracle was chosen as the database manage-
ment system for the new version of ELIST
because it would address many data storage
requirements and was already in use at
sponsor’s sites.

Object-Oriented Design Approach
We chose evolutionary delivery for our life-
cycle model [3]. Under this approach, we
developed the new version of ELIST,
showed it to users, and refined the software
based on their feedback. The first step was
to specify all of the logistical algorithms in
a requirements document based on knowl-
edge gained during prior model develop-
ment and from interaction with the user
community.

Based on these algorithms, we created
Unified Modeling Language (UML) dia-
grams of the basic simulation objects.
Using these requirements, we put our initial
emphasis on developing the visual aspects
of the system needed to support the data
required by the simulation. As full func-
tionality was added to these ateas, it
became apparent that more than a thou-
sand classes would be required in the com-
plete system.

In structuring an application of this
complexity, we needed to employ a
scheme for partitioning the software into
manageable sections. We chose to use
class-type architecture for our design [4].
In class-type architecture, the classes of
the application are organized into well-
defined layers based on their general func-
tion. Figure 1 shows the overall architec-

ture of the ELIST system.

Each layer is well modularized and
addresses a specific area of responsibility.
The different layers can be developed rela-
tively independently with an interface spec-
ifying their use by other layers. In designing
each of these layers, we followed the recur-
sive/patallel model [5], dividing each layer
into subcomponents and gradually refining
the classes as development progressed.

This design approach has many advan-
tages. Changes to one layer are isolated
from other layers, making the application
mote portable, extensible, and maintain-
able. In addition, different software teams
can concentrate on different layers, draw-
ing on their areas of expertise. Many of
these independent layers can be structured
as general-purpose packages in a code
repository used across multiple projects.
This approach enabled us to leverage the
development efforts across multiple proj-
ects, saving expense and increasing code
reliability.

ELIST is composed of four main lay-
ers: the user interface layer, query layer,
memory layer, and persistence layer. In
each layer, UML was used to define classes
and the relationships among them. Each
layer presented its own set of issues that
needed to be addressed in organizing the
classes. In the sections that follow, each
layer is discussed in detail, focusing on
some of the techniques used in that layer.

User Interface Layer

The topmost layer of the ELIST applica-
tion is the user interface layer. Written
using the Java Foundation Classes, this

Figure 1: ELIST Class-Type Architecture

Users

ELIST JClass Chart Rl
User Interface m

1

i MUSE
Query /Waps \

; ; []
Memory C— 1

- I JDBC -

Persistence

www.stsc.hillaf.mil 23

Software Engineering Technology

layer presents graphical windows to the
user. In developing the window designs, we
prototyped windows and presented them to
the user community for iterative feedback
before actual code development began.

ELIST requires both traditional widgets
such as tables, as well as custom widgets
such as specialized trees and Gantt charts.
An extensive package of generic, user inter-
face widgets was developed for several rea-
sons. One is that the standard Java widgets
contain a large number of bugs. By devel-
oping our own widgets that map to these
standard widgets, we were able to provide
the bug fixes that were required as well as
add custom features to the widgets. As new
versions of Java are released, we will update
only the user interface layer to accommo-
date any changes; this greatly increases
maintainability of our models.

The commercial tool called JClass
Chart from Sitraka was accessed to create
standard graphs using a package within the
user interface layer. Again, this allows us to
switch tools if needed and add functionali-
ty beyond that supplied in the tools.

Most of our geographical information
system (GIS) requirements could be imple-
mented by writing a package that uses the
2D graphics package provided in the stan-
dard Java system. However, to display
images created from standard map prod-
ucts, we wrote an interface on top of
National Imagery and Mapping Agency
(NIMA) Mapping, Charting, and Geodesy,
Utility Software Environment (MUSE)
software using the Java Native Interface
utility.

The MUSE library provides routines
for reading and writing standard NIMA
map products. This gives us the flexibility
to completely integrate our map windows

Figure 2: Query Window
=

Options [0 Query Databaze [Advanced Mode

Result & Renlzoe. € Union € Intersestion) | Preview |

Keys Key Description

|Cargu Height

Arguments

[No Arguments =l
Qperator

& ceen = =
----- &, CargolD

—& Commadity
----- &, CommodityCategory [user value |
&, DetailLevel Real value

..... &, I o

2N I

..... € Lergth

& SupplyClassCode

..... L Wittt =

= Unit Infa. -

Cormparison Type

[Megate Result

‘ Logical Operator [and ¥ Mode: & Add Modify ‘

First | Last | ATEr |

4 (Length=50 DAL angth==300.0)
--M‘ Length=50.0
o Length==200.0
% Height<1 00.0

| Add BEfafe ‘

IMest | Wrirest | e ete) |

Cancel

o |

24 CrossTALK The Journal of Defense Software Engincering

with other parts of our application while
taking advantage of existing code for read-
ing the map products. In implementing this
package, we used the technique called wrap-
ping. Object-otiented classes were written to
interface to non-object-otiented functions
within a library.

A main editing window was available in
the interface for each of the main objects in
the memory layer. Each of these top-level
windows organized the data for that object
and provided multiple, related tabbed pan-

els of information.

Query Layer

When dealing with huge amounts of data,
users need a dynamic, flexible mechanism
for retrieving subsets for various types of
processing such as viewing, modifying, or
tallying results. We developed the query
layer to provide users with a way to build,
save, retrieve, and execute complex queries
about their data. When executed, each
query returns collections of objects that
match a defined premise.

The query package provides generic
query and data assignment capability. Any
object that is to be queried must publish
what information can be retrieved or mod-
ified, and what data values are valid by
implementing the QueryObject and
QuneryObjectSummary interfaces. The query
system does not need to know any other
information about the structure or function
of the objects.

We designed the query package in three
sub-layers: user interface, logical operations,
and data management. The query package
dynamically creates a window that allows
users to construct queries and data assign-
ments based on the information published
by the data objects. Through user interface
windows, users build arbitrarily complex
expressions by nesting simple predicate
expressions in a tree-like structure, as
shown in Figure 2.

When the user is creating this tree in the
interface, the system builds a correspon-
ding hierarchy of PredicateExpression classes
and ConditionalStatement classes in the logical
operations layer. The first allows the con-
struction of arbitrarily complex expres-
sions while the second allows modification
of data values within an object.

After the logical operations classes are
created, the data support and management
layer performs the query on the set of data
objects. These data objects are typically in
memory but may optionally be in a rela-
tional database. In this case, the query pack-
age can retrieve and store data in a relation-
al database via Structured Query Language
(SQL) statements using query keys that
have been mapped to database fields. The

predicate expression generates the where
clause of a SQL statement, which is then
sent to the PersistenceBroker, which in turn
builds the complete SQL statement and
executes it.

Memory Layer

The heart of ELIST is its simulation, so in
designing its memory layer (or business
layer), the simulations requirements were
our primary concern. In examining the data
requirements, we found that data can be
divided into a number of main objects that
have dependencies on other objects. Figure
3 shows the main objects in ELIST’s mem-
ory layer.

These main objects represent logical
divisions in the data. The user interface was
structured to correspond to this division of
objects by creating one main editing win-
dow for each of these objects. As shown by
the arrows in Figure 3, each main object
may depend on other objects. To support
handling these dependencies, a Java inter-
face DependentObject was defined. Each main
object implemented this interface. By
redefining basic methods in the interface,
each object specified which other objects it
depended on. This gave us a scheme for
easily checking which objects were affected
by changes in other objects. For example, if
a user wants to edit a new network, we
could quickly determine that any currently
loaded scenarios would have to be
unloaded. This enabled us to keep the
object dependencies in the memory layer
rather than hard-coding it in the user intet-
face.

Metadata for each of these main objects
were mapped to corresponding database
tables that could be managed through
tables in the user interface. Important
metadata included descriptions, modifica-
tion dates, owners, and classification levels.
Including these data in our design enabled
users to more easily track changes being
made for different strategic plans.

Whenever objects are edited in the user
interface windows, the corresponding
objects are immediately changed in the
memory layer, but not in the database. To
support this feature, classes were developed
that implement a Changelog. When a text
field or other widget is edited, the corre-
sponding memory layer objects are
changed and a change record is created. All
changes, whether updates, adds, or deletes,
are stored in a queue associated with the
window. When the user explicitly requests a
save, this log is then used to propagate the
updates to the database through the persist-
ence layer. Special group records allow a set
of changes to be grouped together. The

user can display an undo log at any time and

January 2004

may roll back changes in memory.

Figure 4 shows a UML diagram con-
taining the main Changelog classes. As
objects are edited in the user interface,
methods in the Changel.og class create
instances of the appropriate type of
ChangeRecord object.

Persistence Layer

Proper object-relational integration
requires a strategy for mapping the object
model to the relational model in order for
Java objects to become persistent (saved for
later use) in a relational database manage-
ment system (RDBMS). Without some
strategy, objects cannot be directly saved to
and retrieved from relational databases.
This problem of trying to maintain consis-
tency between the objects in memory and
the state of the database leads to writing
hundreds of lines of embedded SQL code
for reading and writing to the database.

There is a standard package available in
Java for interfacing with commercial rela-
tional databases called Java Data Base
Connectivity (JDBC). This package allows
applications to connect to a wide variety of
database products in a standard way.
However, JDBC is still a lower-level appli-
cation programming interface that does not
facilitate a nice, modular encapsulation of
the mapping needed to make memory layer
objects persistent. To fully support our
class-type architecture, we implemented a
persistence layer that wraps the lower-level
functionality of JDBC [6]. This provides a
means for the objects in memory to create,
retrieve, update, and delete themselves in
the database. Figure 5 shows the main
classes defined in the persistence layer.

Every object that needs to be persistent
is a subclass of PersistentObject. The
ClassMap class is defined to map an object
to a table in the relational database. It sepa-
rates the persistence mechanism from the
object schema. In implementing these
objects, a standard was adopted in which a
subdirectory called dassmap was defined
under each package directory containing
PersistentObjects. The corresponding
ClassMap classes for those objects were
stored in that subdirectory. For every type
of PersistentObject, a ClassMap instance is cre-
ated that stores the information needed to
create SELLECT, INSERT, UPDATE, and
DELETE SQL statements and recotds
information on the database table and
columns used. The ClassMap object imple-
ments the database access for the corre-
sponding PersistentObject.

The main class in the persistence layer is
the PersistenceBroker class. This object acts as
the database manager for ELIST, maintain-
ing the connection to the RDBMS. It han-

January 2004

dles communication between objects in the
application and the persistence mechanism
by wrapping the actual calls to JDBC. The
PersistenceBroker holds the collection of
ClassMaps for all PersistentObjects in memory.
By using calls to JDBC, the PersistenceBroker
class implements saveObject, retrieveOlbject,
and deleteObyect methods. It also implements
a processSQL. method that can submit any
arbitrary SQL call.

When the user is editing data, the per-
sistence layer works in conjunction with the
Changel_og mechanism. When a user selects
a save option from an editing window, the
Changelog for that window is used to for-
ward those saves to the appropriate
PersistentObyjects. 'The PersistenceBroker finds
the corresponding ClassMap for that class
of PersistentObject and calls it to construct
the appropriate SQL statement for the

Object-Oriented Layers in ELIST

Folder
Vehicles Network
Bl Movement
uies Requirements
Projection «— Scenario

Figure 3: Dependencies of Main Objects

object. It then attempts to process the SQL
statement using JDBC. If there are errors,
the database is rolled back, a
PersistenceException is thrown to the user
interface layer; otherwise, the transaction
was successful and the changes to the data-
base are committed. Through the use of
this exception handling mechanism, we
wete able to keep the persistence layer sep-

Figure 4: Changel_og Classes

\

Changelog ChangeRecord EditableObject (intertace)
addElement — dataObject: EditableObject —| addToList

actOnDatabase copy

recordAddition actOnDatabase equals

recordDeletion setPersistence isValid

recordGroup undolnMemory removeFromList
recordUpdate

undolnMemory

N

GroupRecord AddRecord

DeleteRecord

UpdateRecord

actOnDatabase
setPersistence
undolnMemory

groupname: String
records: Vector

actOnDatabase
setPersistence
undolnMemory

orlglnaIObJect EditableObject

actOnDatabase

actOnDatabase
addElement
recordAddition
recordDeletion
recordUpdate
undolnMemory

setPersistence
undolnMemory

Figure 5: Persistence Layer Classes

PersistenceBroker ClassMap PersistentObject
databaseName: String dbTableName:String classKey: String
fieldNames: String[] loaded: boolean
commit primaryFields: String]] persistent: boolean
conectToDB columns: String[] changed: boolean
deleteObject fieldMethods: Method][]
disconnectFromDB [> keyMethods: Method]l [geete
getClassMap hasChanged
getUniquelD createlnstances postlnitialize
processSQL getColumns retrieve
rollback getDBFieldName retrieveAll
saveObject getDeleteSQLFor save
I getinsertSQLFor updateKey
getObject
T ’ getPrimaryKey
getSelectSQLFor - -
ClassMapper getUpdateSQLFor PersistenceException
retrieveClassMaps whereForAll message: String
originalException: Exception

printStackTrace

25

www.stsc.hill.af.mil

Software Engineering Technology

arated from the user interface layer, and at
the same time, keep the database in sync
with the objects in memory.

Summary

Through ELIST development, we learned
that it is essential to apply object-oriented
techniques throughout many levels of our
design. In addition to using an object-ori-
ented language, we structured our applica-
tion using class-type architecture. By divid-
ing our application into layers, we were able
to focus on separate, reusable components
and assign lead developers to each layer
who specialized in the respective compo-
nent areas. By carefully designing each layer
using UML modeling techniques, we
addressed our primary concerns regarding
portability, maintainability, and reusability.
The resulting ELIST system has been suc-
cessfully delivered to the sponsor and is
evolving in response to new and refined
requirements. The packages developed to
support the various layers have been reused
on multiple government projects, provid-
ing substantial cost savings for those devel-
opment efforts as well.lJ

Acknowledgment

This work was supported under a military
interdepartmental purchase request from
the US. Department of Defense, Military
Traffic Management Command Transpor-
tation Engineering Agency, through the
US. Department of Energy contract W-31-
109-ENG-109.

References

1. Braun, M.D, and C. Van Groningen.
ELIST 8 Transportation Model. ANL/
DIS/02-1. Argonne, IL: Argonne
National Laboratory, 13 Feb. 2002.

2. Macal, C.,, C. Van Groningen, and M.
Braun. Simulation of Transportation
Movements Over Constrained Infra-
structure Networks. Proc. of the 1995
Simulation Multi-Conference, Phoenix,
AZ, 27 Apr. 1995 (4): 97-102.

3. McConnell, Steve. Rapid Development:
Taming Wild Software Schedules.
Redmond, WA: Microsoft Press, 1996.

4. Ambler, Scott W. Building Object
Applications That Work: Your Step-by-
Step Handbook for Developing Robust
Systems with Object Technology. New
York: Cambridge University Press,
1998.

5. Berard, Edward V. “Understanding the
Recursive/Parallel Life-Cycle” Hotline
of Object-Oriented Technology 1.7
(May) 1990: 10-13.

6. Ambler, Scott W. “Mapping Objects to
Relational Databases.” White Paper.
AmbySoft Inc., 26 Feb. 1999.

26 CRrossTALK The Journal of Defense Software Engincering

About the Authors

Mary Ann Widing is an
information systems
engineer in the Decision
and Information Sci-
ences Division at
Argonne National Lab-
oratory. Her work at Argonne has
focused on developing complex, graphi-
cal user interfaces for decision support
systems used by government agencies.
Widing has a Bachelor of Science and
Master of Science in engineeting from
the University of Illinois in Utrbana-
Champaign.

Argonne National Laboratory
9700 South Cass Ave.
Argonne, IL 60439-4832
Phone: (630) 252-3798

Fax: (630) 252-6073

E-mail: widing@dis.anl.gov

Kathy Lee Simunich
is a computer scientist
in the Decision and
Information Sciences
Division at Argonne
National Laboratory.
Her wortk at Argonne includes environ-
mental modeling and object-to-rela-
tional databases, as well as writing
reusable components across various
Department of Defense and Depart-
ment of Energy projects. Simunich has
a Bachelor of Science in meteorology
from Northern Illinois University and a
Master of Science in computer science

from North Central College in Illinois.

Argonne National Laboratory
9700 South Cass Ave.
Argonne, IL 60439-4832
Phone: (630) 252-3285

Fax: (630) 252-6073

E-mail: simunich@dis.anl.gov

Dariusz Blachowicz is
a computer scientist in
the Decision and
Information Science
Division at Atgonne
National Laboratory. His
work at Argonne includes a wide range
of modeling and simulation applications,
and Web-based interactive applications
for Department of Defense and

Department of Energy agencies.
Blachowicz has a Bachelor of Science in
civil engineering and a Master of Science
in computer science from Illinois
Institute of Technology in Chicago.

Argonne National Laboratory
9700 South Cass Ave.
Argonne, IL 60439-4832
Phone: (630) 252-6187

Fax: (630) 252-6073

E-mail: blach@dis.anl.gov

Mary Braun is a com-
puter systems engineer
in the Decision and
Information Sciences
- _ | Division at Argonne
g i g National Laboratory.
Her work has focused on military
logistics modeling and simulation.
Braun has a Bachelor of Science from
the University of Santa Clara and a
Master of Science from the University
of California, Berkeley, both in electri-
cal engineering,

Argonne National Laboratory
9700 South Cass Ave.
Argonne, IL 60439-4832
Phone: (630) 252-3727

Fax: (630) 252-6073

E-mail: duffy@dis.anl.gov

Chatles Van Groningen,
PhD, leads the En-
hanced Logistics Intra-
Theater Support Tool
development team at

i Argonne National
Laboratory. His tesearch interests
include modeling, simulation, and
knowledge representation. Van
Groningen has a doctorate in artificial
intelligence from the Illinois Institute of
Technology, a Master of Science in
computer from DePaul
University, and a Bachelor of Arts in
mathematics from Trinity Christian
College.

science

Argonne National Laboratory
9700 South Cass Ave.
Argonne, IL 60439-4832
Phone: (630) 252-5308

Fax: (630) 252-6073

E-mail: vang@dis.anl.gov

January 2004

